
GITHUB AT LINKEDIN
USABILITY RESEARCH FINDINGS AND HUMAN FACTORS RECOMMENDATIONS

FOUNDATION USER SUCCESS

WORK IN PROGRESS: LIVING DOCUMENT

This document enumerates some of our most recent findings (and
respective recommendations) as we progress through our
comprehensive usability evaluation of this tool. This is not a
final deliverable, or a formal HFE work product.

PREPARED BY:

Elizabeth Frey
Staff Human Factors Engineer

Foundation User Success

WITH CONTRIBUTIONS FROM:

Branden R. Thompson
Senior Engineering Manager
User Success Manager PoC

Client Application Frameworks

REVISION MAY 2020

BOTTOM LINE UP FRONT (BLUF)4

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.kittzhn2ilzy


Topline Recommendations 4

Metrics for Success 4

Key Considerations and Caveats 4

Scope of New Recommendations In This Version 4

ChangeLog (What we’ve reviewed) 4

REVISION MAY 2020 4

Hypotheses: What we are researching 5

Access Control Lists (ACL) 5

Continuous Integration (CI) 6

Early Signal Platform (ESP) 7

Policy App 7

Methodology: How we Test 7

Creating Hypotheses, Workflows and Stimulus 7

Identifying User Cohorts 8

Screening Volunteer Participants 8

Selecting Participants 8

Conducting Interviews 9

Results: What We Found 9

Access Control Lists (ACL) 9

Continuous Integration (CI) 14

Early Signal Platform (ESP) 17

Policy Bot 18

Recommendations 19

General 19

Access Control Lists (ACL) 19

Improvements around 'owner vs. reviewer' ergonomics 19

Improved ACL check summary for "neutral" reviews 20

ACL check details 21

Improve clarity around "who to seek for a ship-it" 21

Resolve redundancy between "approval status" and "code
owners" tables 22

Ensure that files are listed in a "scannable" way 23

Simpler signals in some scenarios 24

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.qlufwgij4zl
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.z23mp8mi0uu8
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.zd2l5rdwekh6
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.akv71rf6t2tp
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.23qew501mjo
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ock82tpnbr
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.uab2gvovwu5y
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.c7phkflply84
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.20yut52yi8c8
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.z8whz5nb5xf
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.z8whz5nb5xf
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.hwvslwjcyybv
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.iacjx16e4spa
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.cgferml1yunw
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.k6xcvwcv53um
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ygwvcy6a1194
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.a2rvsf23gae3
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.effw9gu9fxyc
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.925uxfx4d7ap
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.jmj1spbz3ev3
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.njgs18hpe7gj
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.bblvtr53ci2n
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.5rvg5ijl694x
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.jc1ztfnovwvg
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.j1mngn2i7n1r
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ulq7xkdtqgt5
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.wia3vv83vt9y
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.oih2von730hz
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ph9pscg5xxw4
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.tf1n95rvppw3
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.tf1n95rvppw3
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.botixi2uco39
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.rwdhkzjpigrm


Surface more actionable information in Check summary strings
25

Continuous Integration (CI) 25

Provide an OVERRIDE mechanism to bypass branch validation
requirement 25

Rename branch validation check to improve clarity 25

Post merge failed: add "failing" iconography 26

Post merge failed: surface more information in the comment 26

Post merge failed: post an additional comment instead of
editing an existing one 26

Auto-mege: clear delineation between PR controls, and inert
checkboxes 26

Early Signal Platform (ESP) 27

Custom Validation: consider alternate check name 27

Provide the option to surface custom checks to top level 27

Policy App 28

Surface clear info about "comments resolved" policy 28

BOTTOM LINE UP FRONT (BLUF)

Topline Recommendations

The Foundation User Success team recommends that in the event of
limited time and bandwidth, that the following
recommendations/solutions are prioritized in order:

1. CI-7 | BLOCKER | Failing CI jobs: jump directly to
failure

2. ACL-1 | BLOCKER | Add clarity around owner vs non-owner
reviews

3. ACL-3b | BLOCKER | Improve clarity around "who to seek
for a ship-it"

4. ACL-3c | BLOCKER | Ensure that files are listed in a
"scannable" way

5. CI-3 | BLOCKER | Post merge failed: add "failing"
iconography

6. ESP-2 | SHOULD HAVE | Option to surface custom checks to
top level

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ta9gwsxk4rlh
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ta9gwsxk4rlh
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.bgqya3q076u
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.vlzar2tmdxow
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.vlzar2tmdxow
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.l7u5ol5bsvwy
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.18180865slub
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.e36fr8eyi5uj
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.x4c65cbo88pi
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.x4c65cbo88pi
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.nr8tns54z4jh
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.nr8tns54z4jh
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.nd5wtxx3qrao
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.qla90vdw7ixh
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.aiq7llrlgdqb
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.hl9tqutek062
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.t1xrlu1dhzdr
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ujio2xpfkm7y
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ulq7xkdtqgt5
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.ph9pscg5xxw4
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.botixi2uco39
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.18180865slub
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.aiq7llrlgdqb


7. CI-5 | SHOULD HAVE | Post merge failed: post an
additional comment...

8. CI-6 | NICE TO HAVE | Auto-mege: PR controls vs. inert
checkboxes

Scope of New Recommendations In This Version

For this study, Foundation User Success performed direct user
interviews around the following GitHub integrations

● ACL App
● CI App
● Early Signal Platform (ESP)
● Policy App

In total, we worked with the GitHub migration team to define 29
hypotheses across these apps, the (in)validation of which will have a
material consequence on important near-term design decisions.

ChangeLog (What we’ve reviewed)

● REVISION MAY 2020
○ Initial version

Hypotheses: What we are researching

LEGEND

Context

Human User/Actor Being Impacted

Thing being evaluated

Measurement and direction of movement

EXAMPLE:
When onboarding at the company, a new LinkedIn employee should feel
more confident about where to look for acronym definitions.

Access Control Lists (ACL)

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.x4c65cbo88pi
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.nr8tns54z4jh
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=id.fv07y5xs9kov
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=id.94kwippal9iu
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=id.8krevm76c0hc
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=id.k15e2c9heco6
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.uab2gvovwu5y
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#heading=h.uab2gvovwu5y
https://drive.google.com/open?id=1ZZSXvY9qnLT2JnhRJB0RYDQpzeu1Ih_TR1JkRyJucOY


1. When looking at the pull request review screen (PR UI),
users will be able to determine who to contact for a code
review

2. Presenting "assignees" as required reviewers in addition to
the required ACL approvals in the PR check status area, is
not harmful in small projects, and is helpful in large
projects.

3. Displaying the owners who have approved the PR in the check
status area of the PR UI allows participants in the
discussion to determine who has approved and whose approval
is still needed to merge the PR.

4. When looking at the PR UI, users will be able to understand
and articulate the conceptual difference between
"assignees" and "reviewers

5. When looking at the PR UI, users will be able to
disambiguate between reviews from ACL owners and non-owners

6. When looking at the PR UI, in the presence of a passing
review from a non-owner and the absence of the requisite
ship-its, users will understand why their code is not yet
mergeable

7. When looking at the PR UI, users will find it
self-explanatory that a neutral code review (neither an
approval nor a request for changes) from a code owner is
insufficient to meet ACL validation requirements

8. When looking at the PR UI, in the presence of all necessary
ship-its from all required ACL owners, users will
understand why their code is now mergeable

9. When looking at the PR UI, after receiving all necessary
ship-its, upon pushing new unreviewed changes to the PR
branch, users will find the feedback stating that a
re-review is necessary sufficiently discoverable and
actionable

10. Upon looking at the Check Details page for an individual
ACL in a variety of scenarios, users will find the
information presented there to be clear, valuable and
actionable

11. Upon looking at the Check Details page for an individual
ACL in a variety of scenarios, users will find the "Code
Owners" section surfaces discoverable, intuitive and
actionable information to the PR creator

1. which ACLs are involved in a given PR
2. who are all of the owners pertaining to a given ACL



12. In situations where multiple ACL approvals are required,
users will find the feedback surfaced in the PR UI and
checks pages clear, valuable and actionable

13. Users will find the summary text and additional details
in the checks tab, sufficiently clear, detailed and
actionable information about required ship-its

14. Users will find the "Required" indicator on the ACL check
run to be a sufficiently clear indication that approval
from owners is mandatory in order to merge the PR

Continuous Integration (CI)

15. When looking at the PR UI, users will be able to quickly
and easily identify when a non-passing test execution is
preventing their ability to merge

16. Users will largely favor and feel comfortable with having
a critical-path wc-test-like PR validation check, providing
they also have the ability to override it in a "break
glass" situation

17. Users will understand the purpose and nature of the
"branch validation" CI job

18. Users will be able to intuit how to find more detailed
information about a branch validation CI status

19. Users will be able to discover the "post merge job
started" comment posted to the discussion of their PR, and
find it valuable

20. Users will be able to discover the "post merge job
failed" update to the post-merge comment, and find it
valuable and actionable

21. Users will find the level of detail to be "about right"
in the "post merge" comments added to their PR discussion
threads

22. Users will find the check box for controlling automatic
merge of an approved, healthy and ready pull request to be
sufficiently discoverable and intuitive

23. Users will find the concept of PR auto-merge intuitive
24. Users will find opt-in support for auto merge being

allowed on a project and opt-in support on a per-PR basis
to be a set of defaults that provides both the necessary
safety and improved convenience relative to what we enjoy
today

25. Users will not find the sole merge mechanism of "squash
and merge" to be prohibitively limiting

https://drive.google.com/open?id=1FO8awhKYZtg5lng6BNRbNgoG8rlIuTbarTyJypkxxrk


Early Signal Platform (ESP)

26. Users will find the roll-up of all ESP checks into one
signal on the PR conversation page (with details moved to a
separate page) to be intuitive and sufficiently informative

27. For failed checks users will find it easy to see and
understand what failed, and how to fix it

28. Users will find it easy to discover and understand which
failing/pending ESP checks are blocking my merge (required)
and which ones are informational

Policy App

29. Users will find the "unresolved comments" policy check,
when blocking their merge, to be sufficiently discoverable
and actionable

Methodology: How we Test
● Creating the Hypothesis
● Designing workflows to test the Hypothesis
● Identify/Validate User Cohorts associated with the hypothesis
● Creation of the interview script
● Conducting the User Interview
● Post-Interview Analysis
● Creation of Human Factors recommendations
● Hand-Off of Recommendations
● Post Hand-off Follow-up

Creating Hypotheses, Workflows and Stimulus

The GitHub migration team collaborated with Foundation User Success
(FUS) in order to arrive at 29 hypotheses to test. FUS's guidance was
to focus on areas where proving (or disproving) hypotheses would
either surface new information about user priorities and preferences,
or de-risk areas of the project by confirming alignment with the
current work-in-progress solution.

FUS helped to ensure that all proposed hypotheses were conducive to
an objectively-verifiable testing methodology. For example,
investigating whether a given solution is "good" is hard to quantify,

https://drive.google.com/open?id=16jmBQAxXQ_2Spe7m3YC-B4-ptZrOlUsGcxu6E3pyTeM
https://drive.google.com/open?id=1fG0wA7q9JlevpeBcQirog0ZfeFf2_3YmBkopYvi2nkE


but "simple" can be measured by avg. number of steps required to
complete a task, "discoverable" can be measured by how long it takes
a user to notice something, etc…

Hypotheses were then arranged into specific workflows that were used
to form a repeatable testing procedure to be executed for each test
subject. Finally, test stimuli in the form of static HTML were
gathered for the purpose of repeating precise measurements on a fixed
set of screens.

In order to preserve the state of the GitHub private instance for all
interviews , Webrecorder was used to capture a 12.4MB archive of over
200 pages used in this study. Webrecorder player v1.8.0 was used
while conducting user interviews, in order to provide a browser-like
experience within a completely controlled environment.

Identifying User Cohorts

As hypotheses were formed, it became clear that behaviors, priorities
and goals of users LinkedIn engineers vary depending on a number of
factors. The GitHub migration team, in collaboration with FUS arrived
at the following segments of users as being important to represent in
the usability study panel:

● Contributors to apps, CLIs and other leaf-level dependencies
● Contributors to libraries
● Users new to LinkedIn infrastructure
● Users new to GitHub
● Multiproduct admins/owners (responsible for making decisions

about MP-level options like auto-rollback)

Another cohort was identified, but omitted from the study due to the
specific nature of the hypotheses to be tested

● Non-coding observers and contributors (product owner, manager,
tech lead)

Screening Volunteer Participants

The GitHub migration team was responsible for ensuring that a
sufficiently large pool of volunteer participants was made available
for participation in the study. Each volunteer submitted a form with

https://docs.google.com/document/d/10TChm-pJMdm70bsd_q78buDd4GH1qFxKs7xeaeLpCk8/edit#heading=h.s3mustkmyfyt
https://webrecorder.io/
https://drive.google.com/open?id=1CuwLfg9VNcypAeLQQdBC6oDLIzaJamIE
https://drive.google.com/open?id=1CuwLfg9VNcypAeLQQdBC6oDLIzaJamIE
https://github.com/webrecorder/webrecorder-player/releases/tag/v1.8.0
https://drive.google.com/open?id=1hnaAjrL9z1J8CFm0yYaJS2agY9wSRIi_


a variety of questions, and their responses resulted in them being
automatically "bucketed" into one or more cohorts.

Selecting Participants

Fourteen volunteers were selected such that we had no fewer than
three participants inside and outside of each cohort. Additional
adjustments were made to ensure that this group involved
practitioners of a wide range of software engineering disciplines
(i.e., iOS, web, CLI tools, APIs, etc…) and levels of experience.

FIG 01: Panel participants. Black squares indicate person-to-cohort
matches

Invitations were sent to this panel, and they set up their own
appointments for a 60-minute one-on-one video call w/ an interviewer
from Foundation User Success.

Conducting Interviews

Interviews began by thanking participants for their time, and
explaining that they'd be shown a stimulus (webpage) and asked

https://drive.google.com/open?id=1hnaAjrL9z1J8CFm0yYaJS2agY9wSRIi_
https://docs.google.com/spreadsheets/d/1cEygZ811H7QxwWNsGyX_C_5LC-fSEoTByT1YBrr1-pU/edit#gid=722961795
https://docs.google.com/spreadsheets/d/1cEygZ811H7QxwWNsGyX_C_5LC-fSEoTByT1YBrr1-pU/edit#gid=722961795


questions. Interviewers asked permission to record the session, and
made it clear the kind of feedback they should try to vocalize as
much as possible ("please say what you're thinking and feeling").

For the remainder of the interview, users were presented with test
stimuli (webpages) and questions were asked in order to evaluate each
hypothesis. When possible, questions were formed using terminology
used in the hypotheses themselves, so as to avoid affecting the
experiment. When users asked questions of the interviewer, they were
asked to make their best attempt to answer. In situations where a
misunderstanding or misconception would interfere with the remainder
of the interview, the interviewer provided the test subject with
additional information.

Results: What We Found

Access Control Lists (ACL)

HYPOTHESIS (01) CONDITIONALLY
VALIDATED

When looking at the pull request review screen (PR UI), users will
be able to determine who to contact for a code review

During the course of the interview, test subjects were presented with
several opportunities to indicate that they had clarity around, "who
to ask for a ship-it."

● CONDITIONS VALID
a. Users were highly likely to successfully identify required

reviewers for their PR(s) when:
i. A specific assignee was associated with it. (xx/yy)
ii. H01-01b-i and the ACL validation failed. (xx/yy)

b.
● CONDITIONS INVALID

a. Users were highly unlikely to successfully identify required
reviewers for their PR(s) when:

i. {CONDITION / SCENARIO} (xx/yy)
ii. {CONDITION / SCENARIO} (xx/yy)

● ASSOCIATED RECOMMENDATIONS
a. ACL-4a | {PRIORITY} | {Title of Recommendation}
b. ACL-4b | {PRIORITY} | {Title of Recommendation}

http://bookmark/to/recommendation


HYPOTHESIS (02) VALIDAT
ED

Presenting "assignees" as required reviewers in addition to the
required ACL approvals in the PR check status area, is not harmful
in small projects, and is helpful in large projects.

● When an assignee was present on a PR, users were significantly
more likely (XX/YY) to be able to indicate who they'd have to
ask for a ship-it.

● No users indicated that an assignee would be harmful, even
conditionally.

● ASSOCIATED RECOMMENDATIONS
a. ACL-## | {PRIORITY} | {Title of Recommendation}

HYPOTHESIS (03) VALIDATED | IMPROVEMENT
RECOMMENDED

Displaying the owners who have approved the PR in the check status
area of the PR UI allows participants in the discussion to
determine who has approved and whose approval is still needed to
merge the PR.

This hypothesis was largely validated, but in discussing this with
users, it's not the most interesting or important hypothesis in this
area. Users who deal with large and more involved ACL situations
(including 100% of participants who regularly contribute to a voyager
MP) pointed out that knowing which ship-its are still outstanding and
how to obtain them is the main problem to solve, and there is some
significant opportunity for improvement in this area.

HYPOTHESIS (04) INCONCLUSIVE | IMPROVEMENT
RECOMMENDED

When looking at the PR UI, users will be able to understand and
articulate the conceptual difference between "assignees" and
"reviewers

HYPOTHESIS (05) INCONCLUSIVE | IMPROVEMENT
RECOMMENDED



When looking at the PR UI, users will be able to disambiguate
between reviews from ACL owners and non-owners

Nearly all users correctly understood what "assignee" means in the
context of a pull request.

In the general case, users less experienced with GitHub did not
provide a consistent signal about what a "reviewer" means, compared
to an "assignee". In the context where the reviewer completed their
review, these users were largely able to reason their way to "someone
who performed a code review" but could not speak to how that
translated into ability to merge the PR and ACL approvals.

Users already experienced with GitHub universally pointed out that it
was not clear whether a "reviewer" who is not an "assignee" is a
non-assigned ACL owner, or a non-owner. It's important to be clear
about this because in one situation a ship-it will affect the ACL
validation requirement, and in the other it won't.

These hypotheses are marked as "inconclusive" because they were
validated in some important scenarios and invalidated in others.

HYPOTHESIS (06) VALIDATE
D

When looking at the PR UI, in the presence of a passing review
from a non-owner and the absence of the requisite ship-its, users
will understand why their code is not yet mergeable

Irrespective of level of familiarity with GitHub, users seemed to
recognize "a positive review that didn't make the ACLs happy" as a
situation where the reviewer is not a listed ACL owner.

HYPOTHESIS (07) VALIDATED | IMPROVEMENT
RECOMMENDED

When looking at the PR UI, users will find it self-explanatory
that a neutral code review (neither an approval nor a request for
changes) from a code owner is insufficient to meet ACL validation
requirements



The way users responded to the situation that tests this hypothesis
seemed to correlate with level of experience with GitHub. In RB, it's
rare to see a "neutral" code review, although with a "general
comment" it seems to be possible. The main opportunity for
improvement seems to be a more informative CheckRun summary for the
pertinent ACL CheckRun.

HYPOTHESIS (08) VALIDATE
D

When looking at the PR UI, in the presence of all necessary
ship-its from all required ACL owners, users will understand why
their code is now mergeable

Users were broadly able to figure this out. In general "no action
required" feedback is unlikely to be a point of friction. Users were
asked "why is your code able to be merged now" and they largely
answered the "why" correctly. One exception was a Cyber Threat
Investigator who is unfamiliar with our ACL system, who was not able
to articulate much about ACL approvals in general.

HYPOTHESIS (09) INCONCLUSIVE | NEEDS
RE-TESTING

When looking at the PR UI, after receiving all necessary ship-its,
upon pushing new unreviewed changes to the PR branch, users will
find the feedback stating that a re-review is necessary
sufficiently discoverable and actionable

There was an error in the screen we needed for this testing scenario,
and the problem was discovered upon using it in real interviews.
Users had to be asked to "use their imagination" to make a specific
correction before giving feedback, and this involved drawing their
attention to specific areas where we were interested in learning
about discoverability.

This should be re-tested in the next round of user interviews.

HYPOTHESIS (010) INVALIDAT
ED



Upon looking at the Check Details page for an individual ACL in a
variety of scenarios, users will find the information presented
there to be clear, valuable and actionable

While users universally felt that this was a substantial improvement
relative to RB, it's clear that there's a lot of room for improvement
as well. Users pointed out potentially conflicting, poorly-formatted
and low-value information, and made it clear that they are looking
for clear and simple answers to their biggest needs on a per-scenario
basis.

Some specific opportunities for improvement:

● No user was happy seeing a full list of ACL owners in the "code
owners" table, and a subset of these users in the 'please ask
these people for a ship-it' notice near the top of the screen.

● It's not clear how this subset of users was chosen
● On two occasions when a user was probing into details

about their ACL approval status, they had a ship-it but
the information surfaced to them made them feel that it
was a non-owner review. This actively misled them

● The "approval status" information starting in a collapsed state
almost guarantees that an extra click will be required

● The formatting of the "approval status" table was not received
well (although some of the information contained within it was
appreciated)

HYPOTHESIS (011) INVALIDAT
ED

Upon looking at the Check Details page for an individual ACL in a
variety of scenarios, users will find the "Code Owners" section
surfaces discoverable, intuitive and actionable information to
the PR creator

a. which ACLs are involved in a given PR
b. who are all of the owners pertaining to a given ACL

Users almost universally found the "Code Owners" table to be highly
overlapping (in terms of purpose) with the "Approval Status" table.

Some of the biggest opportunities for improvement:



● File paths for most realistic use cases will be long enough to
cause text to wrap within the table cells they're currently
rendered in. Wrapped lines are hard to scan.

● Centering the text alignment in "Approval Status" and "code
owners" tables makes file paths even harder to scan

● A flat list of file paths contains a lot of redundant
information. Alternate formats should be explored

HYPOTHESIS (012) VALIDATE
D

In situations where multiple ACL approvals are required, users
will find the feedback surfaced in the PR UI and checks pages
clear, valuable and actionable

All users who were familiar with the idea of multiple ACLs found this
to be an intuitive way to present the right level of information.

HYPOTHESIS (013) INCONCLUSIVE | IMPROVEMENT
RECOMMENDED

Users will find the summary text and additional details in the
checks tab, sufficiently clear, detailed and actionable
information about required ship-its

Users found the summary strings in simple situations to be intuitive,
but are looking for improvement around the following scenarios

● Re-review
● No review yet
● Neutral review
● Non-owner review

HYPOTHESIS (014) VALIDATED | NEEDS
RE-TESTING

Users will find the "Required" indicator on the ACL check run to
be a sufficiently clear indication that approval from owners is
mandatory in order to merge the PR

Nobody was confused by ACLs being a mandatory requirement, but this
should be re-tested in a situation involving a truly optional (and



likely failing) PR check of some sort. This additional scenario will
help determine whether users understand "Required", or whether they
think all checks are required. The data we have today does not shed
any light on the difference.

Continuous Integration (CI)

HYPOTHESIS (015) VALIDATE
D

When looking at the PR UI, users will be able to quickly and
easily identify when a non-passing test execution is preventing
their ability to merge

Aside from those who are unfamiliar with MP development, all users
were able to discover and understand "pending" and "failing" CI job
states. One user did recommend surfacing "elapsed vs estimated time"
being surfaced in the summary string for the Branch Validation check.

HYPOTHESIS (016) BORDERLIN
E

Users will largely favor and feel comfortable with having a
critical-path wc-test-like PR validation check, providing they
also have the ability to override it in a "break glass" situation

From a philosophical standpoint, all users were comfortable with
automated testing as a mandatory step on the critical path to
bringing a proposed code change into master.

Several (3) users who work on voyager MPs raised concerns about the
reliability of kibitzer-initiated wc-tests, and "flaky" test suites.
Today, one possible workaround in the face of a problem like this is
to run `mint wc-test` locally, and post a URL to the successful
execution in the RB discussion. Of these three users, two of them
felt that mandatory automated tests would motivate solving the root
cause of this flakiness, and one felt that requiring tests to pass
would be harmful to productivity.

Because there's a split between the two parts of this hypothesis (all
favor it in an ideal world, but fewer "feel comfortable" with it



based on their feelings about infra stability) this is marked as
"borderline".

HYPOTHESIS (017) BORDERLIN
E

Users will understand the purpose and nature of the "branch
validation" CI job

~60% of users interviewed correctly articulated the purpose of the
branch validation job, and the commit being tested. Other users were
confused about how "branch validation" might be related to

● Checking whether the branch could be merged into master
● `mint validate`

Because this hypothesis does not have a specific threshold for
"success", and because a non-trivial number of users were confused,
it is marked as "borderline".

HYPOTHESIS (018) VALIDATE
D

Users will be able to intuit how to find more detailed information
about a branch validation CI status

All users were able to successfully drill into details about the CI
job

HYPOTHESIS (019) VALIDATE
D

Users will be able to discover the "post merge job started"
comment posted to the discussion of their PR, and find it valuable

None of the users in the panel had trouble finding the comment in the
discussion. Most found the comment to be valuable, but additional
probing should be performed in this area to involve the notifications
experience (i.e., is it right to send everyone an email when this job
begins?) and relative value of this message, compared to waiting for
a post-merge outcome of some sort before reporting back with
information.



HYPOTHESIS (020) INVALIDAT
ED

Users will be able to discover the "post merge job failed" update
to the post-merge comment, and find it valuable and actionable

While users were able to discover this update, its discoverability
was called into question by those most knowledgeable about GitHub,
given that this is an update to a previous message and thus no
notification will be sent. This signal is vastly more important
relative to "the post-merge job has started".

User feedback revealed at least two more opportunities for
improvement:

● The only emoji on this message is 🎉 , which suggests "success"
in spite of this message being an "action required" situation

● Several users asked if information about the nature of the
failure could be surfaced into the message itself

HYPOTHESIS (021) INVALIDAT
ED

Users will find the level of detail to be "about right" in the
"post merge" comments added to their PR discussion threads

Most users found the level of detail to be "about right" for "the job
has started" and "the job succeeded", but the majority of users felt
that detail was insufficient for the "the job failed" case.

HYPOTHESIS (022) BORDERLI
NE

Users will find the check box for controlling automatic merge of
an approved, healthy and ready pull request to be sufficiently
discoverable and intuitive

A narrow majority of users were able to spot the checkbox. Those who
did felt it to be an adequate mechanism for controlling automatic
merge of pull requests.

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.a5ed3810muwg


Users who needed help (hints from the interviewer) to find the
checkbox had a mix of feedback

● Some of them did not realize that the checkboxes were
interactive

● Some of them had seen checkboxes earlier in the study, and did
not intuit that this checkbox had some side effect of
consequence

● Some of them hadn't noticed it at all

There seems to be a correlation between familiarity with GitHub and
being able to figure out how to operate this UI.

HYPOTHESIS (023) VALIDATE
D

Users will find the concept of PR auto-merge intuitive

The way this was explained to users was the following statement

We are considering a feature called "Pull Request Auto-Merge"
whereby a healthy PR, once it receives all necessary approvals
and passes all automated tests may be automatically merged into
master by a bot. We're interested in your opinions around how
often you can see yourself using this, and how you feel about
opt-in vs opt-out on a per-PR or per-Multiproduct basis.

All user responses indicated that they were able to understand the
concept correctly, although their opinions around preferred defaults
and safety varied.

HYPOTHESIS (024) VALIDATE
D

Users will find opt-in support for auto merge being allowed on a
project and opt-in support on a per-PR basis to be a set of
defaults that provides both the necessary safety and improved
convenience relative to what we enjoy today

About 30% of users felt uncomfortable at the idea of auto-merging
being allowed at all for certain Multiproducts. Concerns around
control and safety seemed to primarily come from the maintainer (ACL



owner) standpoint, and they appreciated the ability to disable this
entirely for certain projects and/or situations.

FUS advises that this question be posed again in a future study, with
the added context of automated dependency upgrades.

HYPOTHESIS (025) VALIDATE
D

Users will not find the sole merge mechanism of "squash and merge"
to be prohibitively limiting

Less than 30% of users had any opinion on this. Those who did
correctly identified "squash and merge" as the mechanism most
conducive to a clean and linear history on trunk, and the closest
equivalent to LinkedIn's existing code review workflow.

Early Signal Platform (ESP)

HYPOTHESIS (026) BORDERLIN
E

Users will find the roll-up of all ESP checks into one signal on
the PR conversation page (with details moved to a separate page)
to be intuitive and sufficiently informative

Many of the users in this study had no experience working in GitHub
repos with a large number of independent Checks applied to each PR.
Upon asking "how many checks is too many to list at the bottom of the
conversation tab", we got answers varying from 6 to 20. It seems that
tastes range widely here.

While in some cases, users were comfortable with many validations
being rolled up into one Check, some users spoke about cases that
they preferred to be "promoted" to their own top-level status.

For example, one of the voyager-web engineers we spoke with felt that
there are certain tools (some existing, some in progress) whose
signals around performance and craftsmanship were on-par, in terms of
importance, with "you have passed your tests". Moving a signal this



important into a collection of other statuses felt (to this user)
like "burying the lede"

Another use case that two users pointed out was tooling that measured
code quality or documentation coverage. While these measurements may
never fail, in some contexts they're sufficiently important to
surface along-side the other top-level checks

Almost universally, the label "custom validations" was not
sufficiently informative -- particularly given that our test stimulus
included `mint validate`, which should be a required (non-custom)
validation of some sort.

HYPOTHESIS (027) VALIDATE
D

For failed checks users will find it easy to see and understand
what failed, and how to fix it

All users were able to figure out how to drill in for more
information, and they really appreciated having direct links to the
specific console output. Upon seeing how this was presented, several
users expressed an interest in seeing this same kind of "drill right
into the problem area" treatment applied to CI (i.e., "jump to
failing child execution log")

HYPOTHESIS (028) VALIDATE
D

Users will find it easy to discover and understand which
failing/pending ESP checks are blocking my merge (required) and
which ones are informational

No user had problems with this.

Policy Bot

HYPOTHESIS (029) VALIDATE
D



Users will find the "unresolved comments" policy check, when
blocking their merge, to be sufficiently discoverable and
actionable

No users had major problems with this, but interviews did draw
attention to some potentially confusing areas.

Recommendations

General

Access Control Lists (ACL)

1. Improvements around 'owner vs. reviewer' ergonomics

Results from testing hypothesis 04 and 05 revealed some
potential ambiguities between roles and responsibilities of
discussion participants listed as "reviewers" on the right
sidebar of the PR UI.

In particular, a "reviewer" not listed as an "assignee" could
be an ACL owner or not. This is very important information to
surface in a reasonable way, because "ownership" determines
whether an approving review counts as part of the ACL
validation requirement.

RECOMMENDATION
FUS recommends...

● ACL owners who provide a review signal of any kind be
added as assignees to the PR in question. Effectively, an
additional owner providing a review can be thought of as
sharing or taking over responsibility to review the code in
question.

● ACL check details should include all review signals, so the
user is not left trying to deduce the meaning of a review
signal by looking at the ACL validation check. This could
be represented as some sort of table like the one shown
below

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.cl3r5mlsuw35
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.g0vfny3pdhr3


FIG 02: Code review signal table, including non-owner reviews

2. Improved ACL check summary for "neutral" reviews
Some users less familiar with GitHub were confused by a
"neutral" review (found while testing Hypothesis 07). The
current implementation treats this scenario as identical to
having no review feedback at all.

FIG 03: Owner Approval summaries for a "neutral" review

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.rrklmswvi4n1


RECOMMENDATION
FUS recommends more complete and explicit ACL validation
feedback in general. Specifically in the "neutral" case, there
should be clear feedback indicating that the review exists, but
does not include an approval to merge

FIG 04: A specific "neutral" review summary string

3. ACL check details

Results from testing hypotheses 10 revealed several
opportunities for improvement to the ACL check details page.

a. Improve clarity around "who to seek for a ship-it"

Several users, upon seeing the "Here are some users that can
approve this ACL file" (marked with "A" in the figure below)
were confused about why a subset of owners were listed in one
place, and the full list of owners in another (marked as "E").

RECOMMENDATION
FUS recommends that either all owners be listed (preferred), or
an extremely high degree of clarity be provided around any
subset presented to users in place of the full list. Users
unanimously agreed that the most important purpose of this page
is answering the question: "who do I need approval from in
order to merge this?" -- any increased alignment with that goal
would likely be appreciated

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.b2pj5j3ijj7z


FIG 05: ACL check details when no approval has been given yet

b. Resolve redundancy between "approval status" and "code
owners" tables

All users who probed into details enough to discover the "Code
Owners" table felt that the information it provides is highly
redundant with the "Approval Status" table above. This
effectively invalidated hypothesis 11.

RECOMMENDATION
Combine these two UI elements into a single area. Further
recommendations TBD.

c. Ensure that files are listed in a "scannable" way

All users who probed deeply enough into the UI to discover the
"Approval Status" or "Code Owners" tables expressed displeasure
at how the files were formatted. FUS recommends rendering this
list of files in a way that can be easily scanned vertically.

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.xm5h9mqvfjnf


One option is to left-align the text. As the figure below
shows, this becomes easier to vertically scan, but still
includes a large amount of redundancy (creating a
signal-to-noise ratio problem)

01

02

03

04

050

6

07

08

09

gradle-elr/resources/buildSrc/src/main/groovy/com/linkedin/gradle/elr/ElrReso

lveDependenciesTask.groovy

gradle-elr/resources/buildSrc/src/main/groovy/com/linkedin/gradle/elr/Publish

ArtifactsPlugin.groovy

gradle-elr/resources/buildSrc/src/main/groovy/com/linkedin/gradle/elr/helper/

utils.groovy

gradle-elr/resources/buildSrc/src/main/groovy/com/linkedin/gradle/elr/model/E

lrData.groovy

gradle-elr/resources/buildSrc/src/main/groovy/com/linkedin/gradle/elr/model/E

lrDependency.groovy

gradle-elr/resources/buildSrc/src/test/groovy/com/linkedin/gradle/elr/Publish

ArtifactsPluginTest.groovy

gradle-elr/resources/buildSrc/src/test/resources/scala/expected_elr-details.j

son

gradle-elr/resources/buildSrc/src/test/resources/structure-base/com/google/co

de/findbugs/jsr305/1.3.9/jsr305-1.3.9.ivy

gradle-elr/resources/buildSrc/src/test/resources/structure-base/com/google/co

llections/google-collections/1.0/google-collections-1.0.ivy

FIG 06: Left-aligned file paths

This noise can be reduced through organizing these paths into a
tree, where single-child paths are collapsed into a single node



01

02

03

04

0506

07

08

09

10

111213141

516

gradle-elr/resources/buildSrc/src/

├─ main/groovy/com/linkedin/gradle/elr/

│ ├─ ElrResolveDependenciesTask.groovy

│ ├─ PublishArtifactsPlugin.groovy

│ ├─ helper/utils.groovy

│ └─ model/

│ ├─ ElrData.groovy

│ └─ ElrDependency.groovy

└─ test

├─ groovy/com/linkedin/gradle/elr/PublishArtifactsPluginTest.groovy

└─ resources/

├─ scala/expected_elr-details.json

└─ structure-base/

└─ com/google/

├─ code/findbugs/jsr305/1.3.9/jsr305-1.3.9.ivy

└─

collections/google-collections/1.0/google-collections-1.0.ivy

FIG 07: File paths arranged into a tree

Rendering file path information in general should be considered
carefully (several users mentioned that they only see value in
this information when it's actionable) but if it must be done,
the ability to identify where in the project changes are made
"at a glance" should be a high priority.

d. Simpler signals in some scenarios

RECOMMENDATION
When no review signal has been received yet, we can provide
some much simpler feedback to users such as

No review from an owner listed in `main.acl` has been completed
yet. Please reach out to one of them for a code review

`main.acl` owners:
@user1
@user2
....



Users felt that everything else displayed on the page had low
value in the "no reviews yet" state

RECOMMENDATION
When a re-review is required, the most important things to
surface to the user are

● which commits (and files within those commits) invalidated
ship-its

● who to reach out to for a re-review

This information should not require any clicking in order to
reveal (expandable sections should begin OPEN)

A few users also asked for some easy ability to ping someone on
slack (either via copy/paste of some pre-generated message, or
a button that would automatically ping a reviewer. This should
be considered carefully, as over-calibrating toward automated
begging for ship-its may not be the right way to solve this
problem.

4. Surface more actionable information in Check summary
strings
Detailed guidance TBD. Related hypothesis: 013.

5. Provide more useful information in the "parent" ACL check
details

The current ACL "parent" status that represents the overall ACL
validation state is shown in FIG 08.

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.7002bzx83m7y


FIG 08: The current top-level ACL check details page (example)

Many users reached this page, when faced with notification that
they hadn't received their ship-its, and expressed a "50/50
guess" at which details link was best to try first

FIG 09: Multiple Owner Approval "details" links to choose from

RECOMMENDATION
We should present a summary of ACL validation across all ACLs
on this page, rather than having users drill in without helping
them out at all.

For example, something like the following might work well:

ACL STATE
-------- -----------------
main.acl approved by @user (link to review)
docs.acl no review yet (link to details)

If users have to "roll the dice" and pick one of the two links
to click on, let's set them up to never lose, by providing them
with actionable information in both places (but possibly at
different levels of detail)

Continuous Integration (CI)

1. Provide an OVERRIDE mechanism to bypass branch validation
requirement

While there seems to be near universal support for branch
validation being placed on the critical path to being able to

https://ghetest.trafficmanager.net/li-foundation/java-elr/pull/14/checks?check_run_id=3842


merge code, users who primarily work on large MPs expressed
concerns that this would almost certainly impede velocity in
the short term. It's for this reason alone that hypothesis 16
is marked as "borderline".

RECOMMENDATION
To address concerns about being able to get around flaky tests
and infrastructure issues by posting a link to a locally-run
`mint wc-test`, a "break glass" tool should be provided,
similar to PCXVALIDATIONOVERRIDE.

2. Rename branch validation check to improve clarity

While about half of users understood "branch validation" to be
equivalent to the kibitzer-initiated wc-test present in
LinkedIn's current development workflow, a significant number
of users were confused. This is why hypothesis 17 was marked as
"borderline".

RECOMMENDATION
Clarity is important, particularly while users are being asked
to make some non-trivial adjustments to their mental model.
Please consider using a simple and self-descriptive label like:

● Build & Test PR
● PR tests
● `mint test`

To avoid the most common misinterpretations ("checking for
whether there will be a git conflict", "mint validate")

3. Post merge failed: add "failing" iconography

Hypothesis 020 was invalidated, in part due to the "post-merge
failed" message not being presented as a clear failure.

RECOMMENDATION
Add some 🚨 or ❌ or 🛑 that attracts the user's attention

4. Post merge failed: surface more information in the comment

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.hh50se4soby3
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.tgd3aqc5cfee
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.6n9aq4ngr5xd


Hypothesis 021 was invalidated, because users wanted to see
more information directly embedded in the comment added to the
PR discussion when a post-merge job fails.

RECOMMENDATION
Add the following information to the "post merge failed"
content

● How many executions and sub-executions failed
● Direct links to jump straight to any failed executions
● Failure classification

5. Post merge failed: post an additional comment instead of
editing an existing one

On GitHub, edits to comments do not result in notifications
being sent to participants in the PR discussion, but creation
of a new comment does. This is part of why Hypothesis 020 was
invalidated.

RECOMMENDATION
Since a post-merge failure is an exceptional event that is
highly likely to be important enough to demand the attention of
the author, a new comment should be added to the discussion with
the failure information, rather than performing an edit to the
existing "post-merge job has started" comment.

6. Auto-mege: clear delineation between PR controls, and
inert checkboxes

It's too easy to get confused between checkboxes in a PR
description that represent the author's TODO list, and
checkboxes that control merge behavior. This is part of why
Hypothesis 022 was marked as "borderline".

RECOMMENDATION
Use ASCII line drawings to create a clear "UI panel", and place
controls that are machine-parsed in that designated area

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.e07jysdz0i1v
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.6n9aq4ngr5xd
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.2zsl8vic88eb
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.2zsl8vic88eb


FIG 09: A UI panel created with ASCII box drawing characters

7. Failing CI jobs: jump directly to failure

Although not directly part of a hypothesis, when faced with the
"failed branch validation" screen, users almost universally
described the next steps they would take

● Click the link to open CRT for the failing execution
● Scroll past all of the passing top-level tasks
● Upon reaching a failing task, open up the list of child

tasks
● Scroll past all of the passing child tasks
● Upon reaching the failing child task, read the failure

classification
● Depending on the information visible on the failing child

task, decide whether to open the corresponding log file

RECOMMENDATION
Bring users much closer to where they'll almost certainly be
interested in going by surfacing information about granular
(child execution) failures, and providing the user with a link
to jump directly to the log file

Early Signal Platform (ESP)

1. Custom Validation: consider alternate check name

The term "custom validations" felt inappropriately broad to a
non-trivial portion of users, which is part of why Hypothesis
026 was marked as "borderline".

https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.mm0arxdduf72
https://docs.google.com/document/d/1G1Mf-Y1M2ZY3k3T0ZqhfwzcYUVOjLU2v4ZbtSz0fzi0/edit#bookmark=kix.mm0arxdduf72


RECOMMENDATION
TBD

2. Provide the option to surface custom checks to top level

Particularly among web developers who are involved in MP
stewardship (i.e., Flagship Infra), there is an ask to allow
certain custom checks to be surfaced to the top-level (directly
in the PR tab).

RECOMMENDATION
This flexibility should be allowed, even if it does potentially
allow the possibility of "too many checks". Users have a wide
range of opinions around how many checks is too many (ranging
from 6 to 20) so we can have confidence that this aspect of the
issue is largely subjective within this range.

Policy App

1. Surface clear info about "comments resolved" policy

None of the hypotheses around the policy app were disproved,
but some follow-up questions from users shed light on a
potential clash between the RB and GitHub mental model,
relating to "resolved comments".

Four users (~30%, all of whom were already familiar with
github) expected that an "approving" review should not also
require comments to be resolved as an independent task. To be
clear, this is not a point of confusion -- users were able to
understand what was being asked of them -- this is "something
that felt strange" when placed in the GitHub world.

RECOMMENDATION
In order to help users understand why things are validated in a
particular way, they should be provided with clear information
that helps them understand how this works in the context of
GitHub. A link to some wiki page within the "comments resolved"
check details should be sufficient.


